An analysis is presented of the tempeature field for a permeable (porous or perforated) wall for a plate, cylinder, and sphere under boundary conditions of the second kind.

Systems consisting of a permeable wall through which an injectant (liquid or gas) is filtered are used extensively in the machine construction and chemical industries as well as in energetics. Despite the urgency of the problem of an analytical analysis of the internal heat and mass transfer in permeable media, this question is studied inadequately in the technical literature [1-6]. The author obtained a solution of this problem in [1-4] for boundary conditions of the first and third kinds. Design dependences for boundary conditions of the second kind are presented below for the following formulation of the problem.

An injectant with the initial temperature T_{ε} and density j_{1} of the transverse flux of material is filtered through a wall with porosity Π from the "cold" to the hot surfacein the presence of internal energy sources or sinks with the specific power $q v(y)$. The temperatures on the "cold" $\left(y=y_{1}\right)$ and the "hot" surface for $y=y_{2}$ are T_{1} and T_{2}, respectively. The thermal flux density at $y=y_{2}$ is $Q_{2 \Gamma}$. It is necessary to find the temperature field in the permeable wall (plane, cylindrical, or spherical) under phase transformation conditions on the "hot" surface of a hood with the influence of all the fundamental process parameters taken into account.

The differential equations for the temperatures of the permeable wall and the injectant, whose derivation and foundation are presented in $[1,6]$ in the dimensionless variables $t=$ T / T_{∞} and $\bar{y} \equiv y / y_{2}$, have the form (here and henceforth the prime denotes the derivative with respect to \bar{y})*

$$
\begin{gather*}
\bar{y}^{\mathrm{r}} t_{\mathrm{r}}^{\prime \prime}+\left(\Gamma \bar{y}^{\mathrm{r}-1}-\xi_{\mathrm{r}}\right) \dot{t}_{\mathrm{r}}^{\prime}+Q_{\mathrm{r}}=0 \tag{1}\\
\bar{y}^{\mathrm{r}} \tilde{t}_{\mathrm{ri}}+\left(\Gamma \bar{y}^{\mathrm{r}-1}-\xi_{\mathrm{ri}}\right) t_{\mathrm{ri}}^{\prime}=0, \mathrm{r}=\mathrm{p}, \mathrm{c}, \mathrm{~s} \tag{2}
\end{gather*}
$$

under the following boundary conditions: $\bar{y}=-\infty$ (p late); $\bar{y}=0$ (cylinder and sphere),

$$
\begin{gather*}
\mathrm{t}_{\mathrm{i}}=t_{\varepsilon} \tag{3}\\
\bar{y}=\bar{y}_{1}, \quad t_{\mathrm{r}}=t_{\mathrm{r} 1} \tag{4}\\
\lambda_{\mathrm{i} \mathrm{\Sigma}} t_{\mathrm{i}}^{\prime}\left(\bar{y}_{1}\right)=q_{\mathrm{ir}} \tag{5}\\
\bar{y}=1, \quad t_{r}=t_{\mathrm{r} 2} \tag{6}\\
L_{\mathrm{r}}+q_{2 \mathrm{r}}=\bar{q}_{2 \mathrm{r}} \tag{7}
\end{gather*}
$$

Here

$$
q_{1 r}=\dot{t}_{r}\left(\bar{y}_{1}\right), \quad q_{2 \Gamma}=t_{r}^{\prime}(1)
$$

[^0]\[

$$
\begin{array}{ll}
\lambda_{\mathbf{i} \Sigma}=\frac{\lambda_{i}}{\lambda_{\Sigma}}, & L_{\mathrm{r}}=\frac{r j_{\mathrm{r}} y_{2}^{1-r}}{\lambda_{\Sigma} T_{\infty}},
\end{array}
$$ \quad Q_{\mathrm{r}}=\frac{q_{V}(\bar{y}) \bar{y}^{\mathrm{r}}}{\lambda_{\Sigma} T_{\infty} y_{2}^{-2}},
\]

and $j_{\Gamma}=j_{i}\left(\bar{y}_{1}\right) y \frac{\Gamma}{1}, r$ is the heat of the phase transformations.
Condition (5) characterizes the equality of the conductive thermal fluxes from the injectant and the "cold" wall surface. According to condition (7), the thermal flux $\overline{\mathrm{q}}_{2 \Gamma}$ delivered to the permeable wall is expended in the phase transformations and heating of the body skeleton.

Let us first find the solution to the problem (2)-(4). It has the form

$$
\begin{gather*}
t_{\mathrm{pi}}=\left(t_{1}-t_{\mathrm{e}}\right) \exp \xi_{\mathrm{pi}}\left(\bar{y}-\bar{y}_{1}\right)+t_{\mathrm{e}}, \quad-\infty \leqslant \bar{y} \leqslant \bar{y}_{1} \\
t_{\mathrm{ci}}=\left(t_{1}-t_{\mathrm{\varepsilon}}\right)\left(\frac{\bar{y}}{\bar{y}_{1}}\right)^{\varepsilon_{\mathrm{ci}}}+t_{\varepsilon}, \quad 0 \leqslant \bar{y} \leqslant \bar{y}_{1}, \tag{8}\\
t_{\mathrm{si}}=\left(t_{1}-t_{\mathrm{e}}\right) \exp \xi_{\mathrm{si}}\left(\frac{1}{\bar{y}_{1}}-\frac{1}{\bar{y}}\right)+t_{\mathrm{e}}, \quad 0 \leqslant \bar{y} \leqslant \overline{y_{1}} .
\end{gather*}
$$

The solution of the differential equation for the permeable body temperature (1) under the boundary conditions (4) and (7) is obtained in two quadratures:

$$
\begin{equation*}
t_{\mathrm{r}}=t_{1 \mathrm{r}}+\frac{1}{\xi_{\mathrm{r}}} \int_{\overline{y_{1}}}^{\bar{y}} Q_{\mathrm{r}}(\bar{y}) d \bar{y}-\frac{Z_{\mathrm{r}}^{(\bar{y})}}{\xi_{\mathrm{r}}}+\frac{1}{\xi_{\mathrm{r}}}\left[\bar{q}_{2 \mathrm{r}}-L_{\mathrm{r}}+Z_{\mathrm{r}}(1)\right]\left[\psi_{\mathrm{r}}(\bar{y})-\psi_{\mathrm{r}}\left(\overline{y_{1}}\right)\right], \quad \mathrm{r}=\mathrm{p}, \mathrm{c}, \mathrm{~s}, \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& Z_{\mathrm{p}}(\bar{y})=\exp \xi_{\mathrm{p}} \overline{\bar{y}} \int_{\bar{y} y_{1}}^{\bar{y}} Q_{\mathrm{p}}(\bar{y}) \exp \left(-\xi_{\mathrm{p}} \bar{y}\right) d \bar{y}, \\
& Z_{\mathbf{c}}(\bar{y})=\bar{y}=\bar{y}_{\bar{c}}^{\bar{y}} \int_{\bar{y}_{1}}^{\bar{y}} \bar{y}^{-\bar{v}_{\mathbf{c}}} Q_{\mathbf{c}}(\bar{y}) d \bar{y}, \tag{10}\\
& z_{\mathrm{s}}(\bar{y})=\exp \left(-\xi_{\mathrm{s}} \bar{y}\right) \int_{\overline{y_{1}}}^{\bar{y}} Q_{\mathrm{s}}(\bar{y}) \exp \left(\frac{\xi_{\mathrm{s}}}{\bar{y}}\right) d \overline{y_{\mathrm{v}}} \\
& \psi_{\mathbf{p}}(\bar{y})=\exp \xi_{\mathbf{p}}(\bar{y}-1), \psi_{\mathbf{c}}(\bar{y})=\bar{y}^{\xi} c, \psi_{\mathbf{s}}(\bar{y})=\exp \xi_{\mathrm{s}}\left(1-\frac{1}{\bar{y}}\right), \tag{11}\\
& \left.Z_{\mathrm{r}}(1)=Z_{\mathrm{r}} \bar{y}\right)\left.\right|_{\bar{y}=1}, \quad \psi_{\mathrm{r}}\left(\bar{y}_{1}\right)=\left.\psi_{\mathrm{r}}(\bar{y})\right|_{\bar{y}=\bar{y}_{1}} .
\end{align*}
$$

For $Q_{\Gamma}=\gamma_{\Gamma}=$ const formulas (9) transform into the simpler form

$$
\begin{equation*}
t_{\mathrm{r}}=t_{\mathrm{Ar}}+\xi_{\mathrm{r}}^{-1} \gamma_{\mathrm{r}}\left(\bar{y}-\bar{y}_{1}\right)-\xi_{\mathrm{r}}^{-1} \bar{Z}_{\mathrm{r}}(\bar{y})+\xi_{\mathrm{r}}^{-1}\left[\bar{q}_{2}-L_{\mathrm{r}}+\bar{Z}_{\mathrm{r}}(1)\right]\left[\psi_{\mathrm{r}}(\bar{y})-\psi_{\mathrm{r}}\left(\bar{y}_{2}\right)\right] . \tag{12}
\end{equation*}
$$

Here

$$
\begin{align*}
& \bar{Z}_{\mathrm{p}}(\bar{y})=\xi_{\mathrm{p}}^{-1} \gamma_{\mathrm{p}}\left[\exp \xi_{\mathrm{p}}\left(\bar{y}-\bar{y}_{1}\right)-1\right] \\
& \bar{Z}_{\mathrm{c}}(\bar{y})=\frac{\gamma_{\mathrm{c}} \bar{y}_{\mathrm{c}}}{1-\xi_{\mathrm{c}}}\left(\bar{y}^{1-\xi_{\mathrm{c}}}-\bar{y}_{\mathrm{l}}^{1-\xi_{\mathrm{c}}}\right), \tag{1.3}\\
& \bar{Z}_{\mathrm{s}}(\bar{y})=\gamma_{\mathrm{s}} H\left(\bar{y}, \bar{y}_{1}\right) \exp \left(-\xi_{\mathrm{s}} \bar{y}\right),
\end{align*}
$$

where

$$
\Lambda\left(\bar{y}, \bar{y}_{1}\right)=\int_{\overline{y_{1}}}^{\bar{y}} \exp \frac{\xi_{\mathrm{s}}}{\bar{y}} d \bar{y} .
$$

Differentiating the solutions (8) and (9) in conformity with the boundary condition (5), we find the value of the temperature $t_{1 \Gamma}$ on the wall "cold" surface which enters into (9):

TABLE 1. Influence of the Dimensionless Blowing Parameter ξ_{Γ} on the Distribution of the Temperature t_{Γ} over the Porous Wall Thickness \bar{y} and Values of $q_{1 \Gamma}$ for $q_{q_{\Gamma}}=0.999$

TABLE 2. Dependence of t_{Γ} on \bar{y} for Different Values of the Parameter L_{Γ}

I	L_{r}	${ }^{1} 1$	$q_{2 r}$	\bar{y}											
				0.80	0.82	0,84	0.86	0.88	0,90\|0,92			0,94\|	0.96	$0.98 / 1.00$	
				$t_{r} \cdot 10^{2}$											
0		1,13	0,989	383	406	428	450	472	494	515	536	557	577	597	
	0,011 0.051	1,13	0,949	379	401	423	445	466	487	508	528	548	568	587	
	0,081	1,10	0,919	375	397	419	440	461	482	502	522	542	561	580	
	0,011	1,32	0,989	364	390	416	441	465	489	512	534	556	577	597	
1	0,051	1,30	0,949	360	386	411	435	459	482	505	527	548	568	587	
	0,081	1,28	0,919	357	382	407	431	455	477	499	521	541	561	580	
	0,011	1,52	0,989	343	373	402	430	458	484	509	533	555	577	597	
2	0,051	1,50	0,949	340	369	398	425	452	477	502	525	547	568	587	
	0,081	1,48	0,919	337	366	394	421	447	472	496	519	540	561	580	

$$
\begin{equation*}
t_{\mathrm{ir}}=t_{\mathrm{z}}+p_{\mathrm{r}} \psi_{\mathrm{r}}\left(\bar{y}_{1}\right), \quad \Gamma=\mathrm{p}, \mathrm{c}, \mathrm{~s} \tag{14}
\end{equation*}
$$

For $Q_{\Gamma}=\gamma_{\Gamma}=$ const we obtain from (14)

$$
t_{1 r}=t_{\varepsilon}+\bar{p}_{\Gamma} \psi_{r}\left(\bar{y}_{1}\right)
$$

Here

$$
\begin{equation*}
p_{\Gamma}=\xi_{\Gamma}^{-1}\left[\bar{q}_{2 \mathrm{r}}-L_{\mathrm{r}}+\gamma_{\mathrm{r}} x_{\mathrm{r}}\left(\bar{y}_{1}\right)\right], \tag{15}
\end{equation*}
$$

where

$$
\begin{gather*}
x_{\mathrm{p}}\left(\bar{y}_{1}\right)=\xi_{\mathrm{p}}^{-1}\left[\exp \xi_{\mathrm{p}}\left(1-\bar{y}_{1}\right)-1\right] \\
x_{\mathrm{c}}\left(\bar{y}_{1}\right)=\frac{1-\bar{y}_{\mathrm{c}}^{\xi_{\mathrm{c}}}}{1-\xi_{\mathrm{c}}} \tag{16}\\
x_{\mathrm{s}}\left(\bar{y}_{1}\right)=H\left(1, \bar{y}_{1}\right) \exp \left(-\xi_{\mathrm{s}}\right)
\end{gather*}
$$

The absolute values of the thermal fluxes $q_{1 \Gamma}$ and $q_{2 \Gamma}$ in the boundary conditions (5) and (7) are found by differentiating the solution (9) with (14) taken into account:

$$
\begin{gather*}
q_{1 \mathrm{r}}=\bar{y}_{1}^{-\mathrm{r}}\left[\bar{q}_{2 \mathrm{r}}-L_{\mathrm{r}}+Z_{\mathrm{r}}(1)\right] \psi_{\mathrm{r}}\left(\bar{y}_{1}\right), \tag{17}\\
q_{2 \mathrm{r}}=\bar{q}_{2 \mathrm{r}}-L_{\mathrm{r}}, \tag{18}
\end{gather*}
$$

where (18) agrees with (7).
For $Q_{\Gamma}=\gamma_{\Gamma}=$ const we obtain from (17)

$$
q_{i r}=\bar{y}_{1}^{-r}\left[\bar{q}_{2 \Gamma}-L_{T}+\bar{Z}_{\mathrm{r}}(1)\right] \psi_{\Gamma}\left(\bar{y}_{1}\right) .
$$

The results of computing the dimensionless temperature of the permeable wall t_{Γ} and the thermal fluxes are presented in Tables 1 and 2, as well as in Figs. 1-3. The data presented

Fig. 1. Distribution of the dimensionless temperature t over the wall thickness $\tau=1-\bar{y}_{1}$, divided into n parts, for $\bar{y}=0$ and $\bar{y}=1$, respectively, $n=$ 0 and $\mathrm{n}=10[1) \overline{\mathrm{y}}_{3}=0.2$; 2) 0.3 ; 3) 0.4 ; 4) 0.5 ; 5) $0.6 ; 6) 0.7$;7) 0.8 ; 8) 0.9], Here and in Figs. 2 and 3: a for a plate; b) for a cylinder; c) for a sphere.

Fig. 2. Distribution of the temperature t over the wall thickness \bar{y} as a function of the dimensionless thermal flux $\bar{q}_{2 \Gamma}$ to the "hot" surface: 1) $\bar{q}_{2 \Gamma}=5.0$; 2) 2.0 ; 3) 0.7 ; 4) 0.4 ; 5) 0.1 ; 6) 0 .
have been obtained for $\xi_{\Gamma}=4, \gamma_{\Gamma}=5, L_{\Gamma}=0.001, \bar{q}_{2 \Gamma}=1$. One of these parameters is assumed variable in order to analyze its influence on the process under consideration.

The data obtained confirm the fact that the values of the temperature t_{P} and their gradients over the wall thickness diminish as the dimensionless blowing velocity ξ_{Γ} increases. The $q_{1} \Gamma$ diminish correspondingly; hence the values of $q_{2} \Gamma$ remain constant since the computation was performed for $\bar{\Phi}_{2 \Gamma}=1$. As the heat expenditure in the phase transformations, characterized by the parameter L_{Γ} (Table 2), increases, the values of $t_{1}, q_{i \Gamma}$, and $q_{2} \Gamma$ diminish, which is explained by condition (7). As the wall thickness $Z=y_{2}-y_{1}$ increases in proportion to the number $n\left(n=0\right.$ and $n=10$, respectively, for $y=y_{1}$ and $y=y_{2}$), the values of the dimensionless temperatures t_{Γ} and the differences $\Delta t=t_{2}-t_{1}$ grow (Fig. 1). As should be expected, the values of $t \Gamma$ also rise with the growth of the flux $\bar{q}_{2} \Gamma$ delivered to the wall hot surface (Fig. 2), as well as the energy source intensity γ_{Γ} (Fig. 3).

The greatest values of the temperature t_{Γ} and the differences $\Delta t_{\Gamma}=t_{2} \Gamma-t_{1} \Gamma$ are observed for a sphere and the least for a plate in all the cases considered, which is explained by the following relationship governing the change in the weight discharge of the injectant over the wall thickness of the porous body:

Fig. 3. Dependence of t on the coordinate \bar{y} and internal energy intensity γ_{Γ} : 1) $\gamma_{\Gamma}=10$; 2) 7 ; 3) 3 ; 4) 0 ; 5) -3 .

TABLE 3. Analysis of Parameters ξ_{Γ}, $\bar{q}_{2 \Gamma}$ for $\lambda_{\Gamma}=0.418 \mathrm{~W} / \mathrm{m} \cdot \mathrm{deg}$

Gas being flltered	$\begin{gathered} i \mathrm{i} \cdot 10^{3} \\ \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{sec} \end{gathered}$	${ }_{\text {kI }} / \mathrm{c}_{\text {pi }} \cdot$ deg	${ }^{T_{\hat{K}}}{ }_{\mathbf{k}}$	E_{r}	$\overline{9}$ ar
Natural	5,83 1,80	1,25 1,25	1070 900	1,75 0,53	4,6 1,1
coke	3,62	3,56	1000	3,07	8,5
Liquefied	3,33	4,18	1140	4,0	9.7

$$
j_{\mathrm{i}}(\bar{y})=j_{1}\left(\bar{y}_{\mathrm{i}}\right)\left(\frac{y_{1}}{y}\right)^{\mathrm{r}},
$$

where $j_{i}\left(\bar{y}_{1}\right)$ is the value of j_{i} at the "cold" surface of the permeable wall.
The dependences (9) and (12) have been obtained under the assumption of constant thermophysical properties. As the analysis performed showed, the error in the analysis because of such an assumption is around 10%, which corresponds to experimental accuracy [6].

Values of the dimensionless parameters ξ_{Γ} and $\bar{q}_{2 \Gamma}$ computed at $T_{\varepsilon}=.293^{\circ} \mathrm{K}, \mathrm{y}_{2}=0.1$ are presented in Table 3 according to test data obtained for a porous ceramic radiator [7].

The values of L_{Γ} used in the computations correspond to the actual densities of a transverse flux of liquid injectant j_{i} which evaporates on the body surface. Thus, in the case of water evaporation $j_{i}=0.24 \cdot 10^{-4}$ and $j_{i}=1.76 \cdot 10^{-4} \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{sec}$, we have $\mathrm{L}_{\Gamma}=0.011$ and $L_{\Gamma}=0.081$, respectively. Corresponding to the value $q_{V}=61.25 \mathrm{~kW} / \mathrm{m}^{3}$ is $\gamma_{\Gamma}=5$. Therefore, the considered values of the dimensionless parameters correspond to the actual range of their variation under practical conditions. In the general case, the solutions obtained are valid for values of $\mathrm{L}_{\Gamma}, \mathrm{Q}_{\Gamma}$, and ξ_{Γ}, which vary between 0 and ∞ [1].

If $\bar{q}_{2 \Gamma}=\left(1-t_{2}\right) \alpha y_{2} / \lambda_{\Sigma}$, where α is the heat transfer coefficient, then the solutions under the boundary conditions of the second and third kinds agree [1]. In contrast to the boundary conditions of the first kind, the heat balance equation for $\bar{y}=1$ hence permits finding t_{2} and taking account of the influence of energy sources or sinks on this surface.

NOTATION

T, permeable wall temperature; π, its porosity; y, a coordinate normal to the surface of the permeable body; λ, heat conduction coefficient; $\lambda_{\Sigma}=(1-\pi) \lambda_{T}+\Pi \lambda_{L}$. Subscripts: T, porous body skeleton; i, injectant; Σ, total (effective) value; 1, "cold" wall surface; 2 , "hot" wall surface, ε, values as $\mathrm{y} \rightarrow-\infty, \infty$ as $\mathrm{y} \rightarrow+\infty$; p , plate; c, cylinder; and s, sphere.

LITERATURE CITED

1. G. T. Sergeev, in: Heat and Mass Transfer in Capillary-Porous Bodies [in Russian], Nauka i Tekhnika, Minsk (1965), p. 74.
2. G. T. Sergeev, "Temperature field of a porous body with evaporative cooling," Inzh.Fiz. Zh., 8, No. 4 (1965).
3. G. T. Sergeev, in: Investigation of Transport Phenomena in Complex Systems [in Russian], Inst. of Heat and Mass Transfer, Beloruss. Acad. Sci., Minsk (1974), p. 3.
4. G. T. Sergeev, "Internal heat and mass transfer with gas filtration through a porous wall and the presence of chemical reactions," Izv. Akad. Nauk BSSR, Ser. Fiz.-Ener. Nauk, No. 2 (1975).
5. M. D. Mikhailov, "Stationary temperature for porous cooling," Inzh.-Fiz. Zh., 11, No. 2 (1966).
6. G. T. Sergeev, Principles of Heat and Mass Transfer in Reacting Systems [in Russian], Nauka i Tekhnika, Minsk (1976).
7. O. N. Bryukhanov, Radiation-convective Heat Transfer during Gas Combustion in Perforated Systems [in Russian], Leningrad State Univ. Press, Leningrad (1977).

OPTIMIZATION OF CONVECTIVE CIRCULAR FINS

I. P. Mikk

UDC 536.21:621.181.14

The volume of a circular fin whose thickness is inversely proportional to the square of the radius is optimized.

The books [1, 2] provide an idea of the present state of the theory and practical application of finned heating surfaces. These books also examine the question of optimizing the volume of the fins. The object of optimization is to select a fin with minimum volume for transferring a specified amount of heat under known thermophysical conditions. Whereas for straight fins the problem of optimization is solved by several variants of the cross section of the fin, for circular fins only the results of [3] for fins of constant thickness are given.

We note that for hyperbolic profiles examined in [1, Tables 1-5], the problem of optimization is solved very simply in the case of the thickness of the fin being inversely proportional to the square of the radius. If we use the notation of [1], this dependence has the form

$$
\begin{gather*}
\delta / \delta_{1}=R^{-2} \tag{1}\\
R=r / r_{1} \tag{2}
\end{gather*}
$$

For convenience, we denote the height of the fin

$$
\begin{equation*}
h=r_{2}-r_{1} \tag{3}
\end{equation*}
$$

and the parameter of the f in N is expressed in the form

$$
\begin{equation*}
N^{2}=2 \alpha h^{2} / \lambda \delta_{1} \tag{4}
\end{equation*}
$$

To make the circular rib more comparable with a straight rib, we refer the thermal flux and the volume of the circular rib to a unit length of the base

$$
\begin{gather*}
Q_{1}=Q_{0} / 2 \pi r_{1}=\alpha \theta_{1} \eta h\left(R_{2}+1\right) \tag{5}\\
V_{1}=\frac{1}{2 \pi r_{1}} \int_{r_{3}}^{r_{2}} 2 \pi r \delta d r=h \delta_{1} \ln R_{2} /\left(R_{2}-1\right) \tag{6}
\end{gather*}
$$

Determining the value of δ_{1} / h^{2} from (4), and h from (5), we can express the product in (6) as

$$
\begin{equation*}
h \delta_{1}=\left(\delta_{1} / h^{2}\right)\left(h^{3}\right) \tag{7}
\end{equation*}
$$

and formula (6) is transformed to the form

$$
\begin{equation*}
V_{1}=\left(\frac{Q_{1}}{\alpha \vartheta_{1}}\right)^{3} \frac{2 \alpha}{\lambda N^{2}} \frac{\ln R_{2}}{\eta^{3}\left(R_{2}+1\right)^{3}\left(R_{2}-1\right)} \tag{8}
\end{equation*}
$$

Tallinin Polytechnic Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 37, No. 6, pp. 1116-1118, December, 1979. Original article submitted February 23, 1979.

[^0]: *The subscript Γ indicates what body (one of the three being investigated) is considered, $\Gamma=p, c, s$. If Γ is a factor or exponent, then it will be 0.1 and 2 , respectively, for the plate, cylinder, and sphere, where $2 \pi \Gamma=1$ for the plate.
 A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 37, No. 6, pp. 1109-1115, December, 1979. Original article submitted November 21, 1978.

