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An analysis is presented of the tempeature field for a permeable (porous or per- 
forated) wall for a plate, cylinder, and sphere under boundary conditions of the 
second kind. 

Systems consisting of a permeable wall through which an injectant (liquid or gas) is 
filtered are used extensively in the machine construction and chemical industries as well 
as in energetics. Despite the urgency of the problem of an analytical analysis of the inter- 
nal heat and mass transfer in permeable media, this question is studied inadequately in the 
technical literature [1-6]. The author obtained a solution of this problem in [1-4] for 
boundary conditions of the first and third kinds. Designdependences for boundary conditions 
of the second kind are presented below for the following formulation of the problem. 

An injectant with the initial temperature T~ and density Ji of the transverse flux of 
material is filtered through a wall with porosity N from the "cold" to the hot surface in the 
presence of internal energy sources or sinks with the specific power qV(Y)- The temperatures 
on the "cold" (y = y~) and the "hot" surface for y = y2 are T, and T2, respectively. The 
thermal flux density at y = Y2 is Q2 F. It is necessary to find the temperature field in the 
permeable wall (plane, cylindrical, or spherical) under phase transformation conditions on 
the "hot" surface of a hood with the influence of all the fundamental process parameters 
taken into account. 

The differential equations for the temperatures of the permeable wall and the injectant, 
whose derivation and foundation are presented in [i, 6] in the dimensionless variables t = 
T/T~ and y = y/y2, have the form (here and henceforth the prime denotes the derivative with 

respect to ~)* 

~ t~ + (r~ ~ - ' -  ~)  t~ + Q~ = o, (1) 

~r t~t + (ry r - '  - -  ~ i )  t~i = O, r = p. e. s, ( 2 )  

under the following boundary conditions: y = -~o (plate); y = 0 (cylinder and sphere), 

t i = t., (3) 

= y, ,  tr = trl, ( 4 )  

s I t  (y,) = q , r ,  ( 5 )  

= l, tr = g,, (6) 

Lr + q ~  = q~r. ( 7 )  

Here 

q,r  ---- t~ (Yi), q ~  ---- t~ (1), 

*The subscript F indicates what body (one of the three being investigated) is considered, 
F = p, c, s. If F is a factor or exponent, then it will be 0.i and 2, respectively, for 
the plate, cylinder, and sphere, where 2~F = 1 for the plate. 
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)~i " ' -~ qv ('Y) Y~ r l v y 2  Qr  - -  - 2  ' 

]vCp i 
- -  Q21t'Y2 ~r = ]I 'CPJ" ~[,[=.-----~--~-l,S 
q2~-- Z= T=  ' ~= y ~ - l  , ~i.Y= 

and Jr = Ji(yl)y{, r is the heat of the phase transformations. 

Condition (5) characterizes the equality of the conductive thermal fluxes from the in- 
jectant and the "cold" wall surface. According to condition (7), the thermal flux q2F de- 
livered to the permeable wall is expended in the phase transformations and heating of the 
body skeleton. 

Let us first find the solution to the problem 

tpi = (h - -  t,) exp~pi (y - -  y , )  + 
' ~ " 

tel = ( t , -- t , )  ( T )  ~c1+ 

l 
tsi = (6 - -  t~) exp~si .~i !/ 

The s o l u t i o n  of  the  d i f f e r e n t i a l  e q u a t i o n  fo r  
the  boundary  c o n d i t i o n s  (4) and (7) i s  obta•  in  

t~ = t,~ + __ I'0.~ (y) dy -- [-d~ -- Lr 

where 

(2)-(4). It has the form 

t,, o<~y<~y,, (8) 

+t , ,  o ~ < ~ < s  

the permeable body temperature (i) under 
two quadratures : 

-t-Zr(1)] [ g r ~ ) - - ~ r ( . ~ O l ,  r = p, c, s, (9) 

7 
Zp (9) = exp ~ [ Q:p(y) exp (-- ~py) dy, 

U, 

Zc (.~). = ? "-~J y-ocQ~ (y) ay, 
Y~ 

(}) Z,(Y) =exp(--}sY)i] Qs (y)exp d~, 
Y~ 

(10) 

! 

,p(y)  = exp~p()t-- 1), *o(Y) = Y "~e, *s (Y) = expos i 1 

Z,. (1) = Zr @)T~=~, * r  (-Y;) = * r  (Y)]~-=}-, - 

For QF = YF = const forraulas (9) transform into the simpler form 

Here 

where 

), (ll) 

Zp (Y) = ~p<fp [exp~p(y-  Yt)--1], 

y l  1, 

- -  C 

Zs (y) = ?~s.H (y, Yi) exp (--~.sg), 

(12) 

(13) 

~I (v, v,) = lexp ~. "- y 
Y,. 

Differentiating the solutions (8) and (9) in conformity with the boundary condition (5), 
we find the value of the temPerature tl F on the wall "cold" surface which enters into (9): 
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TABLE i. Influence of the Dimensionless Blowing Parameter CF 

on the Distribution of the Temperature t F over the Porous 
Wall Thickness y and Values of ql F for q2 F = 0.999 

F 
! lo..Io. olo.  l o.o  I o. o I o. 8 i , , ~ 1 7 6  r 0,82 I 0 , 8 4  ] 0 , 8 6  

t r - 10 = 

~r q l r  0 , 8 0  

2 ,49 847 876 
,30 533 559 
,00 300 320 

7 ,784 212 228 
!0 ,568 157 168 
2 .80 820 855 
o ~ ,54 510 541 

.15 284 306 
,887 200 218 

l0 ,615 149 162 
2 ,15 789 8~1 

,30 292 
,964 188 207 

1 ,655 142 155 

TABLE 2. Dependence 

Parameter Ls 

9O5 
585 
340 
244 
180 
888 
570 
329 
236 
174 
87O 
555 
317 
227 
169 

933 960 986 
s 634 657 
350 380] 4OO 
2EO 277 249 
192 205 218 
920 19511 980 
598 626 652 
351 374 395 
253 272 2S0 
188 201 215 
~07 941 973 
587 1617 646 
342 367 391 
247 266 286 
183 197 212 

lOlO l 1030 
6801 703 
420 440 
3111 329 
2321 247 

tOlO] 1030 
677] 701 
417' 438 
308 327 

246 
1 1030 
6731 699 
4141 436 
306 t 326 
228 245 

1060 1080 
725 746 
460 480 
347 366 
263 28 t 

1060 1080 
724 746 
459 ~ 
3~.6 
263 281 

1060 1080 
723 1 746 
458 346 [ 479 

262 1 

1108 
766 
508 
386 
300 

1100 
766 
508 
386 
300 

1108 
766 
500 
386 
300 

of t F on y for Different Values of the 

r L r q l r  q2r 

0,011 1,13 0,989 
0 0o051 1,11 0,949 

0,081 1,10 0,919 
0,011 1,32 0,989 

1 0,051 1,30 0,949 
0,081 1,28 0,919 
0,011 1,52 0,989 

2 0,051 1,50 0,949 
0,081 1,48 0,919 

For QF = YF = const we obtain from 

He re 

where 

F 
0,80 I o,8  l o , 8 ,  I o. 6 Io.88 o.0o o.;21o.941o, o o,o81,.oo 

383 406 428 450 
379 401 423 445 
376 397 419 440 
364 390 416 441 
360 386 411 435 
357 382 407 431 
343 373 402 430 
340 369 398 42,5 
337 366 394 421 

t,r=t~+P~%(Y0, r 

(14) 

t r . l O *  

472 494 515[53615571577 
466 4871 508 528 1 5481 568 
461 48215021 5221 5421 561 
465 489 1 5121 534 l 5561 577 
459 482/5051 527 ~ 548 1 568 
455 477~499[ 5211 541! 561 
458 484 [ 609 [ 533 i 555 ! 577 
452 477 ] 502 [ 525 1 547 ' 568 

561 519 1 5401 447 47214961 

---- p, C, S. 

597 
587 
580 
597 
587 
580 
597 
587 
580 

(14) 

(15) 

�9 • (.~i) = ~p" [exp,.p(1 - -Y l ) -  11, 

• (.ql) = H (I,  Yi) exp ( - -  t. s ). 

( 1 6 )  

The absolute values of the thermal fluxes ql F and q2F in the boundary conditions (5) 
and (7) are found by differentiating the solution (9) with (14) taken into account: 

q,e = YT r ~ -- 4 + Zr (I)] *r~,), (17) 

q~ =$~--4, (is) 

where (18) agrees with (7). 

For QF = YF = const we obtain from (17) 

q,r = yF r [$~ - 4 + ~r (i)] ,~ (~,). 
The results of computing the dimensionless temperature of the permeable wall t F and the 

thermal fluxes are presented in Tables 1 and 2, as well as in Figs. 1-3. The data presented 

1488 



~,i 

o,9 

0,7 

0,5 

o,~ 

- ! 

L 

I 2 

y 
0 2 4, 6 8 /0 0 2 # 5 8 fO 0 2 ~' 5 8 n 

Fig. i. Distribution of the dimensionless tempera- 
ture t over the wall thickness I = 1- yl, divided 
into n parts, for y = 0 and y = i, respectively, n = 

0 and n = I0 [i) ~ = 0.2; 2) 0.3; 3) 0.4; 4) 0.5; 

5) 0o6; 6) 0.7; 7) 0.8; 8) 0~176 Here and in Figs. 2 
and 3: a fora plate; b) s cylinder; c) fora sphere. 
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Fig. 2. Distribution of the temperature t over the 
wall thickness y as a function Of the dimensionless 

thermal flux q~7 to the "hot" surface: 1) q2 F = 5.0; 
2) 2.0; 3) 0.7; 4) 0.4; 5) 0.i; 6) 0. 

have been obtained for ~F = 4, YF = 5, L F = 0.001, q2 F = i. One of these parameters is as- 
sumed variable in order to analyze its influence on the process under consideration. 

The data obtained confirm the fact that the values of the temperature t F and their gradi- 
ents over the wall thickness diminish as the dimensionless blowing velocity ~F increases. 

The q~F diminish correspondingly; hence the values of q2 F remain constant since the computa- 
tion was performed for ~2 F = i. As the heat expenditure in the phase transformations, char- 
acterized by the parameter L F (Table 2), increases, the values of tiF, qIF, and q2F diminish, 
which is explained by condition (7). As the wall thickness I = y2 -- y~ increases in propor- 
tion to the number n (n = 0 and n = i0, respectively, for y = yl and y = y2), the values of 
the dimensionless temperatures t F and the differences At = t2 -- t~ grow (Fig. i). As should 
be expected, the values of t F also rise with the growth of the flux q2 F delivered to thewall 
hot surface (Fig. 2), as well as the energy source intensity YF (Fig. 3). 

The greatest values of the temperature t F and the differences Atp = t2 F -- tIF are ob- 
served for a sphere and the least for a plate in all the cases considered, which is explained 
by the following relationship governing the change in the weight discharge of the injectant 
over the wall thickness of the porous body: 

1489 



t 

O,6 

O,2 

0 
e 

/ 

J / 

Sj 

/ 

5. ._...7 

,a g 

Fig. 3. Dependence of t on the coordinate y and internal 
energy intensity YF: i) YF =I0; 2) 7; 3) 3; 4) 0; 5) --3. 

TABLE 3. Analysis of Parameters ~r, q2F for %X = 0.418 W/m-deg 

cas being 
fI l terea 

Na tura 1 

Coke 
Liquefied 

i j .  lO z , 

kg /m t �9 sec 

5,83 
1,80 
3,62 
3,33 

Cpl, 
~/~ .~g 

1,25 
1,25 
3,56 
4,18 

T t ,  
K 

1070 
900 

I000 
1140 

~r 

1,75 
0,53 
3,07 
4,0 

4,6 
I,I 
8,5 
9,7 

\ y  / '  
where Ji(Yz) is the value of Ji at the "cold" surface of the permeable wall. 

The dependences (9) and (12) have been obtained under the assumption of constant thermo- 
physical properties. As the analysis performed showed, the error in the analysis because 
of such an assumption is around 10%, which corresponds to experimental accuracy [6]. 

Values of the dimensionless parameters CF and q2F computed at T c = 293~ Y2 = 0.i are 
presented in Table 3 according to test data obtained for a porous ceramic radiator [7]. 

The values of L F used in the computations correspond to the actual densities of a trans- 
verse flux of liquid injectant Ji which evaporates on the body surface. Thus, in the case 
of water evaporation Ji = 0-24"i0-~ and Ji = 1-76"10-4 kg/m2"sec, we have L F = 0.011 and 
L F = 0.081, respectively. Corresponding to the value qv = 61.25 kW/m 3 is YF = 5. Therefore, 
the considered values of the dimensionless parameters correspond to the actual range of their 
variation under practical conditions. In the general case, the solutions obtained are valid 
for values of LF, QF, and ~FI which vary between 0 and ~ [i]. 

If q2F = (i -- t2)~y2/%E, ~ere a is the heat transfer coefficient, then the solutions 
under the boundary conditions of the second and third kinds agree [i]. In contrast to the 
boundary conditions of the first kind, the heat balance equation for ~ = 1 hence permits 
finding t2 and taking account of the influence of energy sources or sinks on this surface. 

NOTATION 

T, permeable wall temperature; H, its porosity; y, a coordinate normal to the surface 
of the permeable body; %, heat conduction coefficient; %Z = (i -- H)% T +H%L" Subscripts: 
T, porous body skeleton; i, injeetant; E, total (effective) value; i, "cold" wall surface; 
2, "hot" wall surface, ~, values as y +-~, ~ as y . +~o; p, plate; c, cylinder; and s, sphere. 
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OPTIMIZATION OF CONVECTIVE CIRCULAR FINS 

I. P. Mikk UDC 536.21:621.181.14 

The volume of a circular fin whose thickness is inversely proportional to the 
square of the radius is optimized. 

The books [i, 2] provide an idea of the present state of the theory and practical ap- 
plication of finned heating surfaces. These books also examine the question of optimizing 
the volume of the fins. The object of opt~nization is to select a fin with minimum volume for 
transferring a specified amount of heat under known thermophysical conditions. Whereas for 
straight fins the problem of optimization is solved by several variants of the cross section 
of the fin, for circular fins only the results of [3] for fins of constant thickness are 
given. 

We note that for hyperbolic profiles examined in [i, Tables 1-5], the problem of opti- 
mization is solved very simply in the case of the thickness of the fin being inversely propor- 
tional to the square of the radius. If we use the notation of [i], this dependence has the 
form 

818~ = R-~, (1 )  

R = r l r i .  (2) 
For convenience, we denote the height of the fin 

h = rg - -  r~, ( 3 )  

and the parameter of the fin N is expressed in the form 

N 2 = 2 ~ / ~ i .  (4) 

To make the circular rib more comparable with a straight rib, we refer the thermal flux 
and the volume of the circular rib to a unit length of the base 

Qt = Qo/2~rt = ~O1Nh(R~ + 1), (5) 

V, = ~ ? 2~r6dr = h6~lnRzl(Rz--  1). (6) 
2nri ~, 

Determining the value of 61/h 2 from (4), and h from (5), we can ez~press the product in (6) 
as 

h6~ = @~/h ~) (h3), ' ( 7 )  

and formula (6) is transformed to the form 

V i = ( Q - ~ l )  s 2~ lnR2 . (8) 
%N 2 ~3(Rz + 1) ~ (Rz--  1) 
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