THERMAL ANALYSIS OF A PERMEABLE WALL FOR GIVEN THERMAL FLUXES
ON ITS SURFACE

G. T. Sergeev UDC 536.425:532.546

An analysis is presented of the tempeature field for a permeable (porous or per-
forated) wall for a plate, cylinder, and sphere under boundary conditions of the
second kind.

Systems consisting of a permeable wall through which an injectant (liquid or gas) is
filtered are used extensively in the machine construction and chemical industries as well
as in energetics. Despite the urgency of the problem of an analytical analysis of the inter-
nal heat and mass transfer in permeable media, this question is studied inadequately in the
technical literature [1-6]. The author obtained a solution of this problem in [1-4] for
boundary conditions of the first and third kinds. Design dependences for boundary conditions
of the second kind are presented below for the following formulation of the problem.

An injectant with the initial temperature T¢ and density Jji of the transverse flux of
material is filtered through a wall with porosity T from the "cold" to thehot surfacein the
presence of internal energy sources or sinks with the specific power qy(y). The temperatures
on the "cold" (y = y,) and the "hot" surface for y = y, are T, and T,, respectively. The
themal flux density at y = y, is Qzp. It is necessary to find the temperature field in the
permeable wall (plane, cylindrical, or spherical) under phase transformation conditions on
the "hot" surface of a hood with the influence of all the fundamental process parameters
taken into account.

The differential equations for the temperatures of the permeable wall and the injectant,
whose derivation and foundation are presented in [1, 6] in the dimensionless variables t =
T/Tw and y = y/y2, have the form (here and henceforth the prime denotes the derivative with
respect to y)*

T h+ T Q=0 .
g i+ Ty —Ei=0,T=pes (2)
under the following boundary conditions: y = —= (plate); y = 0 (cylinder and sphere),
| t =1, (3)
y=yu b=t (4)
Mg b1 () = Gues {5)
y=1, tr=ta (6)
Ly + G2 = Gar- ‘ (7)

Here

G =1t @)y g =1t (1),

*The subscript T indicates what body (one of the three being investigated) is considered,
' = P, ¢, S. If T is a factor or exponent, then it will be 0.1 and 2, respectively, for
the plate, cylinder, and sphere, where 2aT = 1 for the plate.
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and jr = ji(§1)y¥, r is the heat of the phase transformations.

Condition (5) characterizes the equality of the conductive thermal fluxes from the in-
jectant and the "cold" wall surface. According to condition (7), the thermal flux qop de~
livered to the permeable wall is expended in the phase transformations and heating of the
body skeleton.

Let us first find the solution to the problem (2)-(4). It has the form

tpi = (b — 1) expE o (4 — 41) + ter — 00 <y i

fw N S - -
fet = (ts—1) (—-yg—) t 0<G<Tn (8)
.
1 1 - =
tsi =(t,——te)exp§si — e | -, 0<y\ 1
i Y1 y

The solution of the differential equation for the permeable body temperature (1) under
the boundary conditions (4) and (7) is obtained in two quadratures:

. g, — U 1 - — —_
b=t (@@ 5 — B+ — Lo+ Z DI )~ 0L T = (9)

L
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Zc(y) =y Q. (v) dy, (10)
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bp (5) = explp(y — 1), b (5) = o e, b, () = exps '\ 1— 7) (11)
Zo() = Ze @lyey > W) =b:O)l-_7, -
For Qr = yp = const formlas (9) transform into the simpler form
b=t + & ¥ U — 90— & Zo (4) + & [G2— L + Ze(1)] [r (9) — o (9] (12)
Here
Zp (4) = & v [exptp(y — 0 —11,
-t B
Ze ()= —’l’ﬁ—g— y're—yio), (13)
Y
Zg @) =7,1 @’ gl) exp (—&; _!;),
where

g

S dy.

'I

__ ¥
Mg, 79 = (exp
b

Differentiating the solutions (8) and (9) in conformity with the boundary condition (5),
we find the value of the temperature t:p on the wall "cold" surface which enters into (9):
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TABLE 1. Influence of the Dimensionless Blowing Parameter &
on the Distribution of the Temperature tr over the Porous
Wall Thickness y and Values of q,p for qzp = 0.999

l g
T oy, 1 0.80 ] 0,82 0.84]0.86 fo.88/0.90]0.02f 0,94 | 0.96 | 0.98 | 1,00
‘ i t.-108
[
| 2 1.49 1 847 | 876 | 905 | 933 |960986|1010| 1030 | 1060 | 1080 | 1100
I 3 1,30 | 533 559 585 €09 |634!657| 680 703 725 746 766
0 ! 5 1,00 | 300 320 340 360 [380|400| 420{ 440 460 480 £00
; 7 0,784 212 228 244 260 277|249 311] 329 347 366 386
10 0,568 157 168 180 192 |205(218( 232] 247 | 263 | 281 300
| 2 1.80 | 820 855 888 G20 1951 (980(1010; 1030 ; 1060 | 1080 | 1100
i 3 1,54 | 510 | 541 570 | 598 |626;652| 677 701 724 . 746 | 766
1 5 1,15 284 306 | 329 | 351 |2a74[395] 417, 438 | 459 | 480 500
7 0,887] 200 | 218 | 236 | 253 |272{260| 308 327! 346 | 366 I 386
10 0,615 149 162 174 188 [2011215| 230 246 | 263 281 300
: 2 2,15 | 789 831 870 | €07 | 941|973 |1000| 1020 | 1060 | 1080 | 1100
‘ 3 1,81 485 521 555 587 1617|646 673] 699 723 746 766
2 ! 5 1,2 266 | 292 | 317 | 342 1367{391] 414 436 | 458 | 479 ; 500
i 7 0,964| 188 207 227 247 | 266|286 | 306] 326 346 366 386
10 0,655 142 155 169 183 | 197212 228 245 262 | 280 300

TABLE 2. Dependence of tr on § for Different Values of the
Parameter Lp

v
0.80 | 0,82 | 0,84 | 0.86 | 0.88 |0.90]0,92]0,94]0.96]0.9]1 .00

t 100

£ Ur Yor

0,011 | 1,130,980 383 | 406 | 428 | 450 | 472 |494|515|536| 557577 | 597
0 | 0,051 | 1,110,949 379 | 401 | 423 | 445 | 466 |487]508|528| 548|568 | 587
0,081 | 1,10 [0,919| 375 | 397 | 419 | 440 | 461 |482|502|522 542|561 | 580
0,011 | 1,32 /0,989 364 | 390 | 416 | 441 | 465 |489|512534}556)577 | 597
1 {0,051 |1,300,949] 360 | 386 | 411 | 435 | 459 4825051527 ) 548} 568|587
0,081 | 1,28 |0,919| 357 | 382 | 407 | 431 | 455 |4771499|521|541|561 580
0,011 | 1,52 |0,989| 343 | 373 | 402 | 430 | 458 [484 509|533 555|577 | 597
2 | 0,051 }|1,50{0,949| 340 | 369 | 398 | 425 | 452 1477502525 547|568 587
0.081 | 1,48 [0,919| 337 | 366 | 394 | 421 | 447 [472)496519!540]561 | 580

fe =t PePe (g T =Ppicus (14)
For Qr = yp = const we obtain from (14)

tir = tz + Er‘pr (!;i)
Here
Pr = E:l [‘—721‘ — Ly 4 youp @1)]: (15)

where

,_xp@,) =t lexpEp(l —y) — 1},
- I—y
ne )= (16)
%s () = L (1, yy)exp (—E).

The absolute values of the thermal fluxes q.p and qzr in the boundary conditions (5)
and (7) are found by differentiating the sclution (9) with (14) taken into account:

G = 5" e — Ln + Ze (D] 9003 <7
Gor = Gor — Lr e

where (18) agrees with (7).
For Qp = yr = const we obtain from (17)
Gip = z/l—r [azr‘ - Lr 'f’ Zr (1)] ‘pr (yl)

The results of computing the dimensionless temperature of the permeable wall tp and the
thermal fluxes are presented in Tables 1 and 2, as well as in Figs. 1-3. The data presented
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Fig. 1. Distribution of the dimensionless tempera-
ture t over the wall thickness 7 = 1 — y,, divided
into n parts, for y = 0 and y = I, respectively, n =
0 and n = 10 [1) §, = 0.25 2) 0.3; 3) 0.4; 4) 0.5;

5) 0.6; 6) 0.7; 7) 0.8; 8) 0,9], Here and in Figs. 2
and 3: a fora plate;b) tora cylinder;c) fora sphere.
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Fig. 2. Distribution of the temperature t over the.
wall thickness y as a function of the dimensionless
thermal flux g=T to the "hot" surface: 1) qzp = 5.0;
2) 2,03 3) 0.7; 4) 0.4; 5) 0.1; 6) 0.

have been obtained for &r = 4, Yr = 5, Lp = 0.001, azT = 1. One of these parameters is as-
sumed variable in order to analyze its influence on the process under consideration.

The data obtained confirm the fact that thevalues of the temperature tp and their gradi-
ents over the wall thickness diminish as the dimensionless blowing velocity Ep increases.
The q.p diminish correspondingly; hence the values of qsp remain constant since the computa-
tion was performed for Tap = 1. As the heat expenditure in the phase transformations, char-
acterized by the parameter Lp (Table 2), increases, the values of tir, qiy, and q,r diminish,
which is explained by condition (7). As the wall thickness 7 = y, — y, increases in propor-
tion to the number n (n = 0 and n = 10, respectively, for y = y; and y = y2), the values of
the dimensionless temperaturesg tp and the differences At = t; — t; grow (Fig. 1). As should
bé expected, the values of tr also rise with the growth of the flux q.r deliveredto thewall
hot surface (Fig. 2), as well as the energy source intensity yp (Fig. 3).

The greatest values of the temperature tp and the differences Atr = tep — til are ob-
served for a sphere and the least for a plate in all the cases considered, which is explained

by the following relationship governing the change in the weight discharge of the injectant
over the wall thickness of the porous body:
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Fig. 3. Dependence of t on the coordinate y and internal
energy intensity yp: 1) yp=10; 2) 7; 3) 3; 4) 0; 5) —3.

.

TABLE 3. Analysis of Parameters £p, q.r for Ay = 0.418 W/m-deg

Gas bel ii10e, Cpf s Ty £ i
fllneredng kg/m? . sec k}/kﬁ -deg .K r 92

5,83 1,25 1070 1,75 4,6
Nawral 1.80 1,25 900 0,53 1.1
Coke 3,62 3.56 1000 2,07 8’5
Liquefied 333 4.18 1140 4.0 9.7

i @ =i @) (Z—‘)

where ji(§1) is the value of jj at the "cold" surface of the permeable wall.

The dependences (9) and (12) have been obtained under the assumption of constant thermo-
physical properties. As the analysis performed showed, the error in the analysis because
of such an assumption is around 107, which corresponds to experimental accuracy [6].

Values of the dimensionless parameters &p and qa2r computed at T. = 293°K, y2 = 0.1 are
presented in Table 3 according to test data obtained for a porous ceramic radiator [7].

The values of Ly used in the computations correspond to the actual densities of a trans-
verse flux of liquid injectant j; which evaporates on the body surface. Thus, in the case
of water evaporation jj = 0.24-10-“ and j{ = 1.76-10~" kg/m®-sec, we have Lr = 0.011 and
Ly = 0.081, respectively. Corresponding to the value gqy = 61.25 KW/m® is yp = 5. Therefore,
the considered values of the dimensionless parameters correspond to the actual range of their
variation under practical conditions. In the general case, the solutions obtained are valid
for values of Lp, Qr, and &r which vary between 0 and « [1].

If azp = (1 — tz)ay2/Ay, where o is the heat transfer coefficient, then the solutions
under the boundary conditions of the second and third kinds agree[l]. In contrast to the
boundary conditions of the first kind, the heat balance equation for y = 1 hence permits
finding t, and taking account of the influence of energy sources or sinks on this surface.

NOTATION

T, permeable wall temperature; I, its porosity; y, a coordinate normal to the surface
of the permeable body; A, heat conduction coefficient; Ay = (1 — m)Ap+MAp. Subscripts:
T, porous body skeleton; i, injectant; I, total (effective) value; 1, "cold" wall surface;
2, "hot" wall surface, €, values as y » ~»=, ©» ag y > +»; p, plate; c, cylinder; and s, sphere.
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OPTIMIZATION OF CONVECTIVE CIRCULAR FINS

I. P. Mikk UDC 536.21:621,181.14

The volume of a circular fin whose thickness is inversely proportional to the
square of the radius is optimized.

The books [1, 2] provide an idea of the present state of the theory and practical ap-
plication of finned heating surfaces. These books also examine the question of optimizing
the volume of the fins. The object of optimization is to select a fin with minimum volume for
transferring a specified amount of heat under known thermophysical conditions. Whereas for
straight fins the problem of optimization is solved by several variants of the cross section
of the fin, for circular fins only the results of [3] for fins of constant thickness are
given.

We note that for hyperbolic profiles examined in [1, Tables 1~5], the problem of opti-
mization is solved very simply in the case of the thicknessof the fin being inversely propor-
tional to the square of the radius. 1If we use the notation of [1], this dependence has the
form

818 = R™2, &y
R=rlr. (2)
For convenience, we denote the height of the fin
h=ry—Ts (3)
and the parameter of the fin N is expressed in the form
N2 = 2ah2/28,. (4)

To make the circular rib more comparable with a straight rib, we refer the thermal flux
and the volume of the circular rib to a unit length of the base

Qi == Q0/2ﬂri = oc{}mh(Rz + 1), (5)

S' 2nrddr = hS, In Ry/ (Ry — 1). (6)

Vi ==
2ﬂr1 ‘rx

Determining the value of §,/h® from (4), and h from (5), we can express the product in (6)
as

hd, = (8,/ W) (HD), N
and formula (6) is transformed to the form
" V. — Q )3 20 InR, (8)
e ( ady | AN 93¥(Ry+ 12 (Ry—1)
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